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Abstract. During the last decade, recommender systems became a popular class of models for many commercial websites.
One of the best state-of-the-art methods for recommender systems are Matrix and Tensor Factorization models. Besides,
Markov Chain models are common for representing sequential data problems (e.g. categorical time series data). The item
recommendation problem of recommender systems in fact is a categorical time series problem where each user represents
an individual categorical time series. In this paper we combine factorization models with Markov Chain models. To increase
efficiency of parameter estimation we introduce our generalized Factorized Markov Chain model.
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INTRODUCTION

Recommender systems are an important feature of modern websites. Especially, commercial websites benefit from a
boost in customers loyalty, click-through rates and revenue when implementing recommender systems.

Typically data is collected by explicitly asking users for ratings of previously seen items (e.g. movies). Another way
is to collect the data implicitly by examining logfiles. In this case only binary information (e.g. did the user select the
movie or not) is available (Hu et al. [1]). We focus on the item recommendation problem with implicit data which is
in fact a categorical time series problem, i.e. nominal predictors and a nominal target variable.

Markov Chains (MC) of order m are devised for modeling all sequential dynamics between categorical predictors
and a categorical target variable (e.g. item prediction task with users and past items as categorical predictors) which
makes them different to the time-aware models proposed by Koren [2] and Xiong et al. [3] who predicted ratings,
i.e. real-valued target variables. To reduce overfitting while maintaining the expressiveness of an m-order MC this
work adapts the Markov Chain model by replacing the standard maximum likelihood (ML) principle on independent
transition probabilities by a factorization approach of the MC transition tensor (FMC). Extending FMC with personal
information, i.e. allowing each user an individual transition tensor, leads to FPMC a personalized Markov Chain model
learnt with factorized transition probabilities.

Although we focus on item recommendation our approach is more general: any categorical time series prediction
problem can be modeled with our factorization approach. Replacing the item and user variables of the item prediction
task by their appropriate substitutes is sufficient. With respect to our intended application area of recommender sys-
tems, scalability is another issue which we address with an efficient yet simple stochastic gradient descent algorithm.

Notation. Before describing our approach for efficiently learning, i.e. factorizing, personalized Markov Chains as
a solution for categorical time series prediction problem, we introduce the notation of this paper which is in line with
the sequential item recommendation scenario.

Let U = {ui,...,ujy|} be the set of all users and I = {i1,...,i; } the set of all items in the training sample S. For
each user u € U, a sequence of selected items S, ; = (ir,i—1,...,ir—m) is known for any point in time ¢ the respective
user actively selected an item'. The multiset of all sequences S, together is denoted by S.

The sequential item recommendation task can be formalized in creating a personal, dynamic relation >, ,C I 2 which
defines a ranking relation over all pairs of items for user u at time ¢. With this ranking, we can recommend known
users their top n items.

! For the first m item selections where the user history is shorter than m we assume randomly missing values.
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FIGURE 1. Left panel: a personalized Markov Chain of any order m (here: order 1) has O(|U||I|™*!) many independent param-
eters, i.e. transition probabilities (here: only one parameter p(i;|u,i;— is depicted). Right panel: Factorized Markov Chain models
decompose each relation using a function of latent variable representations zi,...,z; where each variable in the corresponding
relation has its own set of k € N* latent feature representations.

Concerning factorization models the column vector v, = (vc 1, ... ,vc)k)T € R¥ will denote the representation of the
corresponding categorical variable ¢ € C (e.g. u € U or i;,i;_1,...,I;—p € I) in the latent feature space R¥. Moreover,
we will use 0 to denote all parameters of a discussed model, i.e. all transition probabilities of order-m Markov Chain
models or all latent feature representations of factorized Markov Chain models.

FACTORIZING MARKOV CHAINS

Any categorical time series prediction problem especially sequential item prediction can be modeled with Markov
Chain models. A Markov Chain model of order m is defined by its m + 1-dimensional transition tensor

A, i =Pitli—1, .. i—m) it,...,i—m € L. (1)

Since personalization is important for recommender systems requesting personalized Markov Chains, i.e. one Markov
Chain per user, leads to an additional dimension in the transition tensor:

Au,i,,“.,i,,,n = p(il‘l'ﬁitfl?‘ .. 7it*m)7 it7 cee 7it7m € Lu eu (2)

In general, each Markov Chain model is parametrized with one parameter per transition probability. This results in
two major issues: first, the probabilities are estimated independently from each other, e.g. the two sets of observations
used to estimate p(if|u,i—1,...,ii—m) and p(i;|u*,i;—1,...,i;—m) are disjoint just because one state is different. Second,
the number of model parameters is exponential in the number of items. In the case of recommender systems where U
and / may have several thousands or even millions of different states this makes the parameter estimation intractable.

Figure 1 shows a graphical representation of an order 1 personalized Markov Chain: due to the independence
assumption there exists an individual ternary relation for each triple of a user u, an item i, and its predecessor i,
representing the independent transition probability. The extension to higher order Markov Chain models is obvious.

Our factorization approach relaxes the independence assumption. This is done by modeling each transition prob-
ability by latent features representations v. € R¥ of its categorical variables ¢. Each observed predictor is mapped
individually in the latent space R¥ k € N¥,

p(it|u7itfla"'aitfm) ::f(Vu~,Vi,7-~-7vi,,m)- (3)

By factorizing the parameters, the independence of the model parameters is removed because each transition prob-
ability shares the same latent features for every shared individual state. In contrast to the independence assumption
which rules out any dependency between transition probabilities factorization models (eq. 3) include dependency as
soon as at least one state is shared. This relaxation enables information sharing between previously independent tran-
sition probabilities via the jointly used k latent features. There exist several ways of learning the feature representation
depending on the definition of the objective criterion and the latent feature model. For general categorical sequential
prediction problems plugging any instance of (eq. 3) into the multinomial objective function and adding a 0-mean
normal prior for the model parameters p(8) ~ N(0, i) yields the general objective function for low-norm factorized
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Markov Chain models. For the special case of item recommendation we apply a similar objective function introduced
by Rendle et al. [4] which directly optimizes the latent feature representation 6 for ranking. Generalizing BPR-opt to
our categorical sequential prediction problem yields

p(018):=TTTIIT IT - I pG>i16)" p(6) n=[{(r1,r2): ri = (wir,ir—1,.. )€ S, r2 = (u,if ig1,...)ESH ~ (4)

ueU i €lifeli_ €l i_mel

In our evaluation we use this ranking criterion for low-norm factorized Markov Chain models but bear in mind that
the multinomial objective criterion is more appropriate in the general categorical time series prediction case.

Learning Markov Chain Models

Maximum Likelihood Approach

The solution for learning transition probabilities using Maximum Likelihood estimation is counting:

. . Wi, .. i) € S}
p(lt|u7lt717"'alffm)7 ‘{(uait—lw-'ait—m) ES}‘

(&)

Problems of MLE. Equation 5 reveals that for estimating transition probabilities only the corresponding full
relations of order m + 2, and m + 1 respectively, are counted whereas similar relations differing in at least one state
are totally disregarded. The reason for the wasteful use of data is the aforementioned independence assumption, i.e.
if at least one of the predictors in any pair of relations r; and r; is different the corresponding transition probabilities
are independent from each other. Thus, observations of one transition are not used for inferring the probability of any
other transition even if some of the predictors in both relations are the same. Neglecting this information requires the
number of observations to grow linearly with the number of model parameters. This is infeasible since the number
of model parameters is O(|U||I|"*!) and typical application scenarios for recommender systems include hundreds of
thousands of users and items.

Latent Factor Models

So far we have discussed different objective criteria and chose (eq. 4) for our ranking problem. Thus, the remaining
task is to select a factorization model f(v,,v;,...,v;_, ). Standard factorization models from the literature are the
Tucker decomposition [5] or or the Canonical decomposition (CD) [6, 7]: The Tucker decomposition (TD) allows each
categorical variable its own latent feature space with different numbers of latent features. CD unifies the latent feature
spaces to one k-dimensional latent feature space R¥ with mutually independent latent dimensions. The expressiveness
of both decomposition models is the same since k can be increased as much as necessary. Recently, Rendle et al.
[8] have proposed a pairwise interaction tensor factorization model (PITF), modeling entries of tensors as a sum of
pairwise factorization models for each possible pair of dimensions, e.g user and selected item dimension. This gives’

n k
fPITF (VL”V,'” e 7\/,',7”1) = Z Z V,"ij"f. (6)

j>if=1
This model is less expressive since it neglects all higher-order interactions except two-way interactions. However,
we will use it following the strategy of Occam’s razor, i.e. modeling lower order interactions first. MOreover, by
merging the factorization model (eq. 6) with the ranking criterion BPR-opt we need way less parameters as we will
see. Before our factorization model meets the BPR-opt criterion we need to define the ranking probability in terms of
our factorization model:

pis >i710) =o(f(r)— f(r")) with Sur = (Vu,Vijs---5vi ), SZT, = (VusVirs -3 Vi) @

2 To simplify notation we will substitute indices in the order (i, u,i;_1,...,i;_n,) by integers (1,2,...,n) when necessary.
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where o (x) = H% is the logistic function. For PITF, this has the advantage that all pairwise interactions vanish
which do not represent an interaction with the target variable i;.

For learning any of the factorization models scalable, fast, and easy to implement algorithm for learning O
are stochastic gradient descent algorithms. For the BPR-opt learning we adapted the sampling and gradient step
such that for each iteration a sequence S,; = (u,is,i;—1,...,i—m) € S) together with a negative target state i; :=

(u, i 01, ii—m) & S is sampled. Using both the gradient is computed.
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FIGURE 2. Comparison of factorized personalized Markov Chains (FPMC) to factorized Markov Chains (FMC), matrix factor-
ization (MF), a standard dense Markov chain (MC dense) learned with Maximum Likelihood and the baseline "'most-popular’. The
factorization dimensionality is increased from 8 to 128.

We empirically compare the recommender quality of our proposed factorized MC methods (factorized personalized
Markov chain FPMC and factorized Markov chain FMC) to non-factorized Markov chain (‘MC dense’), standard
matrix factorization (MF) and the most-popular baseline (MP) — i.e. ranking all items by how often they have been
bought in the past. For evaluation we use two different measures: AUC and f-measure. The runtime of model training
linearly depends on the number of features. With our implementation, the training of each model took from a few
hours up to 34 hours for the FPMC-128 model on the larger (sparse) dataset.

Dataset. We evaluate our recommender on the purchase data of an online shop of a drug store. The dataset we
used is a 10-core subset, i.e. every user bought in total at least 10 items and vice versa each item was bought by at least
10 users. The dataset consists of 2,635, 125 purchases of 71,602 users on 7,180 items. Typically each user buys a set
of items, i.e. a basket. The average basket size is 11.3 items and the average number of baskets per user is 3.2. For
these data the fitted Markov Chain models of order 1. Since we have shopping baskets instead of single items, several
items are bought simultaneously. This set-behavior can be easily modeled by our order-m MC models by dropping the
sequential order assumption. We evaluated by splitting the dataset S into two non overlapping sets: a training set Sirain
and a testing set Siesr. This split is done by putting the last basket for each user into Sig and the remaining ones into
Strain- We removed those users from the evaluation that have bought less then 10 different items in the past (i.e. Strain)-
Secondly, for each user we removed all items from the test baskets (and the corresponding predictions) that this user
has already bought in the past — this is because we want to recommend to the user items that are new/ unknown to
him. Note that this makes the prediction task much harder and explains the low f-measure of all methods in figure 2.
Otherwise just rerecommending already bought items would be a simple but very successful strategy for non-durable
products in drug stores like toothbrushes or cleaner. The quality is measured for each user u on the first basket B, in
the test dataset.

Results. In figure 2 the quality of the different models is shown. For the factorization methods we run each method
with ky ; = kr 1 € {8,16,32,64,128} factorization dimension. With reasonable factorization dimensions (k > 32) all
the factorization methods outperform the standard MC method. And in total, the factorized personalized MC (FPMC)
outperforms all other methods.
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